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Abstract

The laser-induced thermal stresses are important during heating of substrate surfaces, since stress levels above the
yield stress of the substrate material occur. In this case, the plastic deformation and/or material defects occur in the
irradiated region. In the present study, laser short pulse heating of gold is considered. The electron kinetic theory
approach is employed to model the heating process. This approach accounts for the non-equilibrium energy transport
in the surface vicinity of the substrate material. The thermal analysis and temperature predictions from an electron
kinetic theory approach were presented in a previous study. Therefore, the results of thermo-elastic analysis due to the
temperature field predicted in the previous study are given here. The elastic stresses developed in the substrate material
due to the temperature field are modelled, and the temporal and spatial variations of the stress field and von Mises
stresses are computed. It is found that the stress field in the substrate material does not follow the temperature field. A
stress level on the order of 10° Pa occurs in the surface vicinity. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laser short pulse heating of metallic substrates in-
itiates non-equilibrium energy transport in the surface
vicinity of the substrate material. In this case, the use of
the Fourier heating model overestimates the tempera-
ture rise in the surface vicinity [1]. This is because the
high order terms, which are neglected in the Fourier
heating model, become important in the energy trans-
port process [2]. Moreover, diffusion in metals takes
place due to subsequent collisions between excited elec-
trons and lattice site atoms. Consequently, the tem-
perature distribution in the substrate material depends
on the electron energy distribution and the number of
collisions that takes place in the region considered.
Harrington [3] showed that electrons within a five elec-
tron mean free path contribute 98.5% of the total energy
transported provided that 07 /0x was constant over at
least this distance. Consequently, when examining the
energy transport in metals due to laser short pulse
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heating, a microscopic level consideration employing
electron lattice site atom collision is necessary.
Considerable research studies have been carried out
to explore the temperature field in the substrate material
due to short pulse laser heating. The non-equilibrium
heating of a tungsten surface due to femtosecond laser
irradiation was investigated by Fujimoto et al. [4]. They
used the two-equation model to describe the electron—
phonon coupling process and predicted the electron
temperature. They indicated that the relaxation time for
electron—phonon energy coupling is on the order of
hundred femtoseconds. The temporal behavior of non-
equilibrium electron and lattice temperatures in copper
due to laser short pulse heating was examined by El-
sayed-Ali et al. [S]. They monitored the thermal modu-
lation of the transmissivity of thin copper films and
predicted the electron temperatures using the two-
equation model. They indicated that a few thousands
degrees of difference between electron and lattice tem-
peratures occur in the early interaction time (~1 ps). Qiu
and Tien [6] studied microscopic energy deposition and
transport processes during laser short pulse heating of
multi-layer metals. The predictions showed that multi-
layer metals presented very different thermal responses
from a single layer metal during the heating process. The
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Nomenclature

a Gaussian parameter (m)

Cp specific heat capacity (J/m*K)

E modulus of elasticity (Pa)

f fraction of electron excess energy transferring
from the lattice site during a single collision

G shear modulus (Pa)

h enthalpy (J/Kg)

I peak power intensity (W/m?)

k thermal conductivity (W/mK)

N number of electrons

e surface reflectivity

s distance along the x-axis for electron
movement (m)

t time (s)

T(x,y,z,1t)

temperature (K)

X distance along the x-axis (m)

y distance along the y-axis (m)

z distance along the z-axis (m)

D elasticity matrix

AT temperature rise at a point (x,y,z) at time = ¢
with respect to that at 1 =0

Tref reference temperature at t = 0

{8} the applied body force

{P} the applied pressure vector

{F}  concentrated nodal forces to the element

{0U} virtual displacement

{6U;} virtual displacement on the boundary where
pressure is prescribed

{8U} virtual displacement of boundary nodes where
concentrated load is prescribed

[B] strain displacement gradient matrix

{U} nodal displacement vector
[N]  matrix of shape (or interpolation) functions
T
[K.] = J,[B]"[D][B] d¥
element stiffness matrix
T
{F} = [L[B]"[D][e"] ¥
element thermal load vector
b T
{F}" = [IN]'[f*] d¥
element applied body force vector
s T
{F} = [5[N] [P] dU
element pressure vector
[N,  shape functions for normal displacement at
the boundary surface

Greek symbols

A increment

0 electron temperature (K)

n distance along the y-axis for electron
movement (m)

o stress vector (MPa)

ap principal stress (MPa)

{ distance along the z-axis for electron

movement (m)
{e}  total strain vector
{e"} thermal strain vector
€ equivalent strain

o thermal diffusivity (m?/s)

e coefficient of thermal expansion in strain
(1/K)

oy coefficient of thermal expansion in stress
(J/m3 K)

v Poisson’s ratio

0 absorption coefficient (1/m)

A mean free path (m)

o density (kg/m?)

two-equation model for laser short pulse heating of
metal surfaces was presented by Phinney and Tien [7].
They identified the regimes of predominantly electronic
and thermal desorption. A simplified approach was in-
troduced by Al-Nimr and Arpaci [8] to describe the
thermal behavior of a tin metal film exposed to pico-
second thermal pulses. The approach eliminated the
coupling between the energy equations and simplified
the governing differential equations. Tzou [9] introduced
a unified field approach for heat conduction for micro-
to-micro scales. He indicated that the universal form of
the energy equation facilitated identification of the
physical parameters governing the transition from dif-
fusion to electron—phonon interaction. Yilbas [10] in-
troduced the electron kinetic theory approach to
describe the non-equilibrium energy transport due to
laser short pulse heating of metallic surfaces. He indi-
cated that the predictions of electron kinetic theory

approach the Fourier theory results as the duration of
heating extends to nanoseconds. He further argued that
the electron temperature attained higher values than the
lattice site temperatures in the surface vicinity of the
substrate material for sub-nanosecond heating pulses
[1.
When the substrate material is irradiated by a high
intensity and short laser pulse, an anomalous tempera-
ture rise occurs in the surface vicinity. This results in
thermal expansion of the substrate material, which in
turn develops thermal stresses in the irradiated region.
The magnitude of the thermal stresses, in some cases,
exceeds the yield stress of the substrate material, which
in turn results in plastic deformation in the heated re-
gion. A considerable number of research studies have
been carried out to identify the stress field in the ir-
radiated region. Most of the studies, however, were lim-
ited to long pulses or continuous laser heating processes.
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Modest [11] studied the elastic and viscoplastic re-
sponses of ceramics during laser drilling. He showed that
the substrate material softened near the ablation front.
The plane stress model was introduced by Li and Sheng
[12] for fracture initiation during laser cutting of
ceramics. A fracture initiation was determined based on
the maximum tensile and compressive stresses. They
indicated that low cutting speed resulted in a wider kerf
and a low stress levels. Dain et al. [13] investigated the
stress development along the weld direction. The ana-
Iytical expressions for the mismatch and the stress tensor
were obtained for the thermo-elastic infinite plate in
terms of a convolution integral depending on the general
heat sources. They indicated that their findings for the
distortion gap was in agreement with the experimental
findings. Elperin and Rudin [14] developed an analytical
model for a two-dimensional thermo-elastic response of
multilayer coating due to laser irradiation. They deter-
mined non-stationary temperature, strain, and stress
distributions in a multilayer assembly. They indicated
that the temperature rise across the irradiated surface
resulted in stress levels which caused an irreversible
damage to the coatings. Yilbas et al. [15] investigated the
laser induced thermal stresses on steel surfaces. They
indicated that the excessive stress levels occur in the
surface vicinity of the substrate.

In the light of the above arguments, the present
study is conducted as an extension of the previous work
[16]. The thermal stresses due to the temperature field
resulting from a short pulse laser heating is modeled.
The resulting stresses in the axial and transverse direc-
tions are computed. The temporal and spatial variations
of von Mises stress are obtained in the irradiated
region.

2. Energy transport model

The electron—phonon collision mechanism through
which the energy exchange between the electrons and
lattice site atoms occurs is considered in the electron
kinetic theory approach. The mathematical arrange-
ments of the governing equation are given in [17,18]. The
final form of the energy equation resulting from the
kinetic theory is presented here. Therefore, the resulting
equation pertinent to the laser heating pulse is

oT (x,,2,1) = fk |x — s
PS—% = ) _ 7~
x [0(s,y,2,t) — T(x,y,2)] ds
+/ f—fexp(—b};”')
0(x,n,z,t) — T(x,y,z)] dy

()

X [0(x7y7 ) t) - T(x7y7z)} d‘;

o Isurf stx
+ s
—00 )\4 NSX +NXS

X 'exp ( - ‘x;S|> Kl‘vf,(q’) dpds (1)

= & ~.
+1 Fexp<,|x2 \)(uf)e(x,y’w)d;

b Ny
-yt
XeXp(_Q>/xf/(<P) do ds. 2

Eqgs. (1) and (2) are the equations of interest for laser
machining. The method of solution to be used in the
following analysis is the transformation of the simul-
taneous differential-integral equations (1) and (2) using
the Fourier integral transformation, with respect to x, y,
and z. The resultant ordinary differential equations may
then be handled much more conveniently. The three-
dimensional analysis of Fourier transformation, which is
considered in the present study, is similar to that carried
out in the previous study [16]; therefore, only the re-
sulting equation is given below, i.e.,

02 02 02 oT
1‘7 ot ) |ow
k(aZT RT 0T

2 Tar dy? T ) + Lurdexp (= dx]) 3)

Ly 1s the power intensity distribution at the surface,
which is

[()(1 - Vf)
Lt = - 3
(= Jma OF P

where a is the Gaussian parameter, r¢ is the surface re-
flectivity, and [, is the power intensity. The lattice site
temperature can be obtained from Eq. (3), which is the
differential form of Egs. (1) and (2). Moreover, if the
term (1%/f)(0%/0x? + 8% /ox? + 8* /ox?) (pC,0T /0t) is ne-
glected for all f values, Eq. (3) becomes
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pC

or_ (0T @ &1
Poar

e dxz dxz ) + Lyroexp ( — O|x|)
which is exactly the same as a Fourier heat conduction
equation as described in the previous study [16].
Therefore, the equations derived from the electron
kinetic theory approach for the heat conduction process
are more general than the Fourier equation.

In order to account for the thermomechanical effect
during the heating process, the energy transport equa-
tion (Eq. (3)) should be modified. For a deformable solid
body, the specific enthalpy can be written as [19]

h=h(T,e),

where e is the strain. The enthalpy can be written as

Oh Oh
= T — .

pdh p(aT) dT + (ae>rde
It was shown that [19]

oh oC,

— = T
(&)= (&),
where C, is the volumetric specific heat and T is the
reference temperature. However,

—V.gq=pdh
or
or Oe
_vq* a +a676(at) (4)

where a, is related to the coefficient of thermal expan-
sion and it is

y = oC,
T \or )
Rearrangement of Eq. (4) yields

. or o, To(Oe/0t)
V=G {1 e ar

or

or de/ot
Vo= Ca—[1+n<aedTﬂ,

where 1 (n = (3Ge2Ty)/Cp, % = o;/3G, and G=E/3
(I —2v)) is the thermomechanical coupling factor,
which is shown to be small for most metals at room
temperature [19].

The stress components can be written as

o, = FEe, — Eo,T,
o, = Ee, — Eo.T, (5)
o, = FEe, — Ea.T

with
_ou
€x T
oUu
y :@7 (6)
ou
i

where U is the thermal displacement. In the stress field
the equilibrium condition yields [20]

U

Therefore,
*U
U —a(V-T 79_
VU - a(V-T) T (8)

Using Egs. (5)«(7), and combining Egs. (4) and (8), it
yields

V=G5 ()50 ©)

The equation describing the energy transport due to
electron—phonon interactions (Eq. (3)) can be written as

G220
U — 2 2
V-q=kV°,T)+ / at(V T)
+ Lgyer0 exp(—0|x]). (10)

Combining Egs. (9) and (10), it yields

or o, n\ o
5 PAVER T+76—(V T)f(a—e>§(V~U)
b i
Jr[surff eXp(*é'X') (11)
Cp

Eq. (10) is the general energy transport equation, which
includes the thermomechical effect.

Initial condition is: at t =0 — T =0 and U = 0.

Boundary conditions are: Since the laser pulse length and
heating duration are short, there is no convective nor
radiative losses are considered from the surface

oT
At t # 0 and at the surface — =0,

X |surface

Att#0andx=y=z=o00—-T=0and U =0.

3. Thermal stress model

During laser material processing, the heating is
localized and, therefore, a very large temperature vari-
ation occurs over a small region. Owing to this tem-
perature gradient, large thermal stresses are generated in
the substrate, which can lead to the defects in the ma-
terial such as the formation of cracks and fractures in
the material. The stress is related to strains by
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{o} = [D{<}, (12)

where {0} is the stress vector, and [D] is the elasticity
matrix.

{e} ={e} —{e"},

where {e} is the total strain vector and {e®} is the
thermal strain vector.
Eq. (12) may also be written as

{e} = D] {o} +{e"}. (13)

Since the present case is axially symmetric, and the
material is assumed to be isotropic, the above stress—
strain relations can be written in Cartesian coordinates
as

€ = % [oxx — D(JW + azz)} + 0 AT,
€y = % [0y — V(0 + 02:)] + %AT,
: (14)
€ = 7 [O'Z_. — l)(G_n + ayyﬂ + 0. AT,
140w 140 140
€ = Taxya €xz = Taxza €z = To-y.m

where E, v, and o, are the modulus of elasticity, Pois-
son’s ratio, and coefficient of thermal expansion, re-
spectively. AT represents the temperature rise at a point
(x,y,2) at time = ¢ with respect to that at ¢t =0 corre-
sponding to a stress free condition. A typical component
of thermal strain from Eq. (14) is

Eth == O‘eAT = ae(T - Tref)7 (15)

where Ty is the reference temperature at 1 = 0.
When o, is a function of temperature, then Eq. (15)
becomes

T

eh = / % (T) dT. (16)
Trer

The present study uses a mean or weighted-average va-

lue of «, such that

" =% (T)(T — Ther), (17)

where @(T) is the mean value of coefficient of thermal
expansion and is given by
jTTM %(T) dT

%lT) ==
re

(18)
The principal stresses (o1, 02, 03) are calculated from the
stress components by the cubic equation

Oy — Op Oy Oz
Oy Gy — 0p 0, =0,
0. — 0p

where g, is the principal stress.

The von Mises or equivalent stress, ¢’, is computed as

o = \/% [(al —a) + (02— a3) + (63— 1)’

The equivalent stress is related to the equivalent strain
through

o = E¢€,

where €' is equivalent strain.

Boundary conditions for stresses: Since there is no surface
tractions are involved in the problem under consider-
ation the corresponding boundary and initial conditions
are introduced:

Att=0—-0=0
and

At t # 0 and at the surface — ogyace = 0

t#0andx=y=z=00—03=0.

3.1. Calculation procedure

Since the energy transport equation and equation
for thermal stresses are coupled through displacement
and temperature, the iterative procedure is introduced
when solving both equations simultaneously. However,
if the thermal displacement field is known, then, the
temperature field can be easily determined from the
energy transport equation (Eq. (10)). In this case, let a
tentatively calculated temperature on a guess displace-
ment U* is denoted by 7*. Let the correct displacement
is obtained from U = U* + U’ and the corresponding
correction in temperature is 7 = T* 4+ T'. To proceed
the iterative procedure, the following steps are consid-
ered:

e Guess the displacement (U*);
e solve the energy transport equation to obtain the

temperature (77);

solve the equation for the displacement using 7*;

treat the new computed displacement as a new guess

displacement (U*);

e repeat the iterative procedure unless U'/U < 1073,

The numerical method employed to solve the energy
transport equation (Eq. (10)) uses a finite difference
scheme, which is well established in the literature [21]. In
order to obtain accurate results, the convergency criteria
should be met. The stability criteria for the numerical
scheme is given as follows:
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Table 1
Properties of substrates used in the computation
6 (1/m) o (m?/s) C; (J/km?) /. (m) E (GPa) G (GPa) v % x 107¢ (1/K)
6.16 x 107 1.26 x 10~* 2.5 x 10° 10-° 77 36.96 0.44 14
5% 12)2pC, [ bt 1 2} where {fB} is the applied body force; {P} is the ap-
1> ABS A’(A}) axhe) plied pressure vector; {F} is the concentrated nodal
—2kf[ 2_._ 1 ] forces to the element; {dU} is the virtual displacement;
T {6U;} is the virtual displacement on the boundary
kf kf 2X4%pC where pressure is prescribed and {SU} is the virtual
PG 8 apsy 220G displ t of bound des wh trated
(Ax) Ax) (Ay) Ar(Ay) isplacement of boundary nodes where concentrate
load is prescribed.
ABS kf 247 pC The strains may be related to the nodal displacement
(A2 At(Az by
s 275G, szc +2),2pcp {e} = [B{U}, (20)
At(Ax 2 At(Ay)*  At(Az)? where [B] is the strain displacement gradient matrix and
{U} is the nodal displacement vector.
_ABS frGy The displacements within the elements are related to
At the nodal displacement by
1 {U} = INH{U}, (21)

1
Lz(mf At(Ay)? Az(Az)ZH’

where Ax, Ay, and Az are spatial increments in x, y, and z
axes while Az is the time increment.

To develop a finite element procedure for stress
computation, the standard displacement-based finite el-
ement method is used. The basis of this approach is the
principle of virtual work, which states that the equilib-
rium of any body under loading requires that for any
compatible small virtual displacements (which are zero
at the boundary points and surfaces and corresponding
to the components of displacements that are prescribed
at those points and surfaces) imposed on the body in its
state of equilibrium, the total internal virtual work or
strain energy (6U) is equal to the total external work due
to the applied thermally induced loads (JV), ie.,
oU = oV. For the static analysis of problems having
linear geometry and thermo-elastic material behavior,
one can derive the following equation using standard
procedure [22]

[ (16" Dite) - (36} 0l ) av
- /\7 (SUYT{f*} dv + /U (5U)T{P}

where [N] is the matrix of shape (or interpolation)
functions.
Eq. (19) can be reduced to the following matrix form

KT} — {F"} = {F}" + {F}" + {F}, (22)

where [K] = [, [B]'[D ][ B]dV is the element stiffness
matrix; {F"} = jv [B]"[D][€™] dV is the element thermal
load vector; {F}® = fv[N] fB} dv is the elemental body
load vector; {F} = j” P]dU is the element
pressure vector and [N,] is the matrlx of shape functions
for normal displacement at the boundary surface.

Assembly of element matrices and vectors of Eq. (22)
yields

[K){d} = {R},

where [K], {d} and {R} are the global stiffness matrix,
global nodal displacement vector, and global nodal load
vector, respectively. Solution of the above set of simul-
taneous algebraic equations gives unknown nodal dis-
placements and reaction forces. Once the displacement
field due to temperature rise in the substrate is known
corresponding strain and stresses can be calculated.

The boundary conditions for the stresses imply the
followings:

+ 3 (6T (FY, (19) {(F*y =0, {F}*=0, {F}=0.
Table 2
Pulse properties used in the simulation
Pulse intensity (W/m?) Heating period (ns) f

0.5 x 10"

0.06-0.6 104
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Gold is used as the workpiece material. The thermo-
physical properties of gold are given in Table 1 while the
step input pulse intensity and the f value used in the
computations are given in Table 2.

4. Results and discussions

The thermal stresses developed due to short pulse
laser heating of gold were simulated. Since the temper-
ature response of the substrate material was given in a
previous study [16], only the three-dimensional stress
field including the thermomechanical coupling effect is
presented here. The resulting stress field is axisymmetric.
Consequently, the stress distribution in the transverse
direction (y-axis) is identical to that corresponding to
the z-axis stress for a given depth in the substrate.
Therefore, the stress distribution in the x—y plane is
presented.

Fig. 1 shows the transverse stress component distri-
bution along the y-axis at different locations in the x-axis
and z =0 for two heating periods. The stress is com-
pressive in the surface vicinity. As the axial distance
from the surface increases, the stress becomes tensile.
The magnitude of the stress is very high in the surface
vicinity and it reduces rapidly as the location in the x-
axis increases from the surface. In the early heating pe-
riod (0.06 ns), the stress component reduces as distance
along the y-axis increases. In this case, the stress com-
ponent in the surface vicinity (x = 1078 m) reduces at a
slow rate in the transverse direction away from the ir-
radiated spot center (0<y<0.2 x 10™* m) and this de-
cay rate accelerates along 0.2 x 1074 <y <7 x 107* m.
This occurs due to the temperature distribution in the
surface vicinity of the substrate material across the ir-
radiated spot center, i.e., the temperature decays in the
transverse direction across the irradiated spot because of

1.0E+08
0.0E+00
& -1.0E+08
»
»n
I&J Time =6x10""'s
= -2.0E+08 i i
«n —-—--x=65E-07m.
rrrrrr x=45E-07m. ||
_3.0E+08 ———-Xj2.5E-07 m.| |
o~ x= 1E-0‘8 m.
-4.0E+08
0.0E+00 2.0E-04 4.0E-04 6.0E-04 8.0E-04
(a) Y-AXIS (m)

3793

the spatial distribution of the power intensity, which is
Gaussian (Fig. 2) [16]. In the case of a long heating
period (0.6 ns, Fig. 1(b)) the stress component shows
similar behavior to that shown in Fig. 1(a). However,
the stress along the transverse direction reduces to
almost zero at x = 2.5 x 1077 m below the surface. As
the depth increases beyond x = 4.5 x 10~7 m, the stress
component becomes compressive, provided that the
magnitude of the stress level reduces.

Fig. 3 shows the axial stress component along the x-
axis at different y-axis locations and z=0 for two
heating periods. In the early heating period (0.06 ns, Fig.
3(a)), the axial stress component is compressive for
x<2x 1077 m and y > 5.25 x 107* m. The opposite is
true for x<2x 107" m and y<5.25 x 10~ m. More-
over, the magnitude of the stress attains high values
close to the surface and it reduces to zero at some depth
below the surface. This is because of the temperature
field; in this case the lattice site temperatures attain low
values and their time derivatives also become low as the
distance from the surface increases towards the bulk of
the substrate material (Fig. 4). In the case of a relatively
long heating period (0.6 ns, Fig. 3(b)), the axial stress
component behaves similar to those shown in Fig. 3(a),
provided that the stress level increases. The values of
stress component reduces close to the irradiated spot
center (y = 1.5 x 10~* m).

Fig. 5 shows the three-dimensional view of the von
Mises stresses developed in the substrate material at two
heating periods while Fig. 6 shows the variation of von
Mises stress along the x-axis at different y-axis locations
for two heating periods. In the early heating period (0.06
ns, Fig. 6(a)), the von Mises stress attains relatively high
values in the surface vicinity and it reduces as the dis-
tance from the surface increases. Moreover, the stress
reduces to almost zero at about x = 2.2 x 10~7 m below
the surface and it increases gradually with increasing

1.0E+09
0.0E+00 ==
T — |
o
@ // Time = 6x10™s
0 -1.0E+09 | \
';.':J I T L N x=6.5E-07 m.
[ SN S S A I | x=4.5E-07 m. ||
»n
—==-x=25E-07m.
-2.0E+09 x=1E-08 m. H
-3.0E+09
0.0E+00 2.0E-04 4.0E-04 6.0E-04 8.0E-04
(b) Y-AXIS (m)

Fig. 1. (a) Stress component in transverse direction along the y-axis at 0.06 ns heating period. (b) Stress component in transverse

direction along the y-axis at 0.6 ns heating period.
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250 1200 T T
Time =6x10"s | Time =6x10™"s.
=1Eoem x=1E-08 m
200 e _x=26E-07m|| = 900 — = =-x=26E-07m||
.§i ~~~~~~~ x=3.6E-07 m fi 08, """ x=3.6E-07m
w = x w —-—--x=6.6E-07m ||
& 150 x=6.6E-07 m || 3
=} =]
g 2 600
g :
% 100 %
.
= F 300 -~
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T N
L IR ~
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-1.0E-03 -5.0E-04 0.0E+00 5.0E-04 1.0E-03 -1.0E-03 -5.0E-04 0.0E+00 5.0E-04 1.0E-03
(a) Y-AXIS (m) (b) Y-AXIS (m)

Fig. 2. Temperature profiles along the y-axis at two heating periods. (a) Temperature profiles along the y-axis at heating period of
0.06 ns. (b) Temperature profiles along the y-axis at heating period of 0.6 ns.
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Fig. 6. (a) von Mises stress along the x-axis at 0.06 ns heating period. (b) von Mises stress along the x-axis at 0.6 ns heating period.

axial distance from the point of minimum stress. This
behavior is because the transverse stress component,
which has a higher magnitude as compared to the axial
stress component. In the case of long heating duration
(0.6 ns, Fig. 6(b)), the von Mises stress attains relatively
higher values than those presented in Fig. 7(a). The lo-
cation of minimum stress moves further away from the
substrate along the x-axis as compared to its counterpart
obtained at low heating period, i.e., the location of
minimum stress is x = 2.2 x 10~ m below the surface
for 6 x 107! s heating period, butitisx = 3.5 x 107" m
below the surface for the 6 x 107! s heating period.
This is because the temperature in the surface vicinity,
which increases rapidly as the heating progresses (Fig.
4). It should be noted that in the early heating period
(0.06 ns), the non-equilibrium heating governs the en-

ergy transport in the surface vicinity. However, at 0.6 ns
heating period, the equilibrium heating initiates, which
enhances the diffusional energy transport in the surface
vicinity as indicated in the previous study [16]. Conse-
quently, the material response to a short heating pulse
changes as the heating progresses, which in turn results
in different stress levels in the substrate. The high stress
levels in the surface vicinity are because the temperature
rise in the surface vicinity along the transverse direction.
In this case, the temperature rises rapidly in the surface
vicinity due to the collisional process (Fig. 4). Moreover,
the surface is not irradiated uniformly across the trans-
verse direction due to the laser power intensity distri-
bution across the irradiated spot. Consequently, the
stress corresponding to y = 6.5 x 10~% m does not result
in considerable stress levels in the axial directions.
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Fig. 7 shows the von Mises stress along the transverse
direction at different axial locations for two heating
periods. In the early heating period (0.06 ns, Fig. 7(a)),
the von Mises stress along the transverse direction and
close to the surface attains considerably larger values as
compared to that of other axial locations. This is be-
cause of the temperature distribution in the axial direc-
tion; in this case, a temperature gradient on the order of
10~% K/m occurs in the surface vicinity [16]. In the case
of long heating period (0.6 ns, Fig. 7(b)), the von Mises
stress shows similar behavior to that obtained for early
heating period (0.06 ns) in the surface vicinity. However,
as the axial distance increases from the surface, the stress
attains higher values as compared to that corresponding
to the early heating period at the same axial location.
This is because of the temperature profile in the sub-
strate; in this case, the lattice site temperature increases
in the surface vicinity as the heating progresses (Fig. 4)
[16]. As the depth in the axial direction increases to
4.9 x 1077 m, the stress reduces and it does not vary
along the transverse direction.

Fig. 8 shows the temporal variation of von Mises
stress at different axial and radial locations. The dis-
cussions for the results are given due to the stress levels
at different axial locations.

The location of x = 1078 m below the surface (Fig.
8(a)): The von Mises stress attains the highest value for
all locations in the transverse direction. The rise of the
stress is higher in the early heating period and it reduces
as the heating progresses. This behavior is similar to that
corresponding to the temperature (Fig. 4). The reduc-
tion in stress level at different locations in the transverse
direction is due to the power intensity distribution across
the irradiated spot, i.e., it is Gaussian, which in turn
results in a decreasing temperature close to the edge of
the irradiated spot center.

The location of x = 2.5 x 1077 m below the surface
(Fig. 8(b)): The von Mises stress shows a different trend

as compared to that of x = 10~® m below the surface.
The stress in the region away from the irradiated spot
center (y = 2.5 x 10~* m) reduces in the early heating
period. It, then, increases rapidly as the heating pro-
gresses. This indicates that in the region away from the
irradiated spot center, the stress attains the minimum in
the early heating period and the point of minimum stress
moves away from the irradiated spot center as the
heating progresses. Moreover, the stress variation with
time is almost linear beyond the point of minimum
stress.

The locations of x=4.5x10""m and x=6.5x
1077 m below the surface (Figs. 8(c) and (d)): The von
Mises stress increases in the early heating period and the
rate of increase reduces as the heating time progresses.
As the distance moves close to the irradiated spot center,
the rate of increase in stress remains almost the same,
i.e., as the location in the transverse direction increases
further close to the irradiated spot center, the stress in-
creases steadily with time. It should be noted that the
rise of temperature at x = 4.5 x 1077 m slows due to the
fact that (i) the absorption depth is less than 4.5 x 1077
m; therefore, no laser energy is absorbed in this region,
and (ii) the temperature rise in this region is because of
the heat diffusion, which is not substantiated at low
heating period [16]. The magnitude of stress is lower at
x = 4.5 x 1077 m than that of at x = 6.5 x 1077 m (Fig.
8(d)). This indicates that the compression and tensile
stress levels attain the minimum at this depth below the
surface. However, the stress increases steadily with time
atx =6.5x 107" m.

Fig. 9 shows the high order terms ((8/0¢)(V - U) and
(0/3t)(V?*-T)) in the energy transport equation (Eq.
(10)). The values of (3/3)(V*-T) are larger than the
values of (0/0¢)(V - U). This may suggests that the high
order term due to temperature rise influences the energy
transport more than its counterpart due to displace-
ment. Consequently, the effect of thermomechanical
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coupling on the energy transport is considerably small
for the heating conditions considered in the present
study. This is because of the low lattice site temperature

(~200°C) as well as small displacement of the surface,
which is on the order of 10~° m.

5. Conclusions

The thermo-elastic response of gold due to sub-
nanosecond (0.06-0.6 ns) laser pulse heating is consid-
ered, and the stress field and von Mises stress are
predicted. In general, it is found that the stress field does
not follow the temperature field in the substrate ma-
terial. The temporal behavior of von Mises stress differs
considerably at different depths below the surface.
Moreover, a stress level on the order of 10° Pa occurs in
the surface vicinity of the substrate material. The specific
conclusions derived from the present study are listed as
follows:

1. The stress in the transverse direction is compressive in
the surface vicinity of the substrate. As the distance
from the surface increases along the x-axis, the trans-
verse stress component reduces rapidly. The stress
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component also varies along the irradiated region
along the y-axis, such that the decay rate of the stress
component increases along 02x 10 m<y<
4.5 x 10* m. Moreover, as the heating progresses,
the stress component reduces to almost zero at
x =2.5x 1077 m below the surface and it becomes
compressive at depths below this point.

2. The axial stress component is tensile in the surface
vicinity of the substrate for y < 5.25 x 107 m. As
the distance from the surface increases further this re-
verses. The magnitude of the stress component does
not vary considerably at different locations in the
substrate. At the long heating period, the stress com-
ponent behaves similar to that corresponding to the
early heating period, provided that the stress level in-
creases at the long heating period.

3. The von Mises stress attains high values in the surface
vicinity and it reduces along the transverse direction.
In the case of a long heating period (0.6 ns), the mag-
nitude of the stress increases; however, as the axial
depth from the surface increases beyond
x = 4.5 x 10”7 m the magnitude of stress reduces con-
siderably to small values.

4. The temporal behavior of the von Mises stress varies
considerably at different locations in the substrate.
The stress level increases rapidly with time in the re-
gion close to the substrate surface. As the heating
progresses, the stress rises steadily. Moreover, as
the depth from the surface increases, the stress in-
creases slightly with heating time provided that the
magnitude of the stress is less. Although the tem-
perature reduces with depth below the surface, the
temperature gradient is large. Consequently, the large
temperature gradient generates high stress levels in
the substrate material.
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